
easypipe Documentation
Release 1.3.0

Muriel Gelin

December 01, 2021

CONTENTS

1 Getting started (Linux) 3
1.1 Check your python version . 3
1.2 Check if pip is installed . 3
1.3 Software requirements . 4

1.3.1 Phenix . 4
1.3.2 Open Babel . 4

1.4 Download and install easypipe package . 4
1.5 Check easypipe installation . 5
1.6 Uninstall easypipe package . 5
1.7 References . 6

2 Getting started (Windows) 7
2.1 Check your python version . 7
2.2 Software requirements . 7

2.2.1 Phenix . 8
2.2.2 Open Babel . 8

2.3 Download and install easypipe package . 8
2.4 Check easypipe installation . 9
2.5 Uninstall easypipe package . 9
2.6 References . 9

3 easYGet 11
3.1 easYGet usage . 11
3.2 What does it do ? . 12

4 easYPipe 15
4.1 easYPipe usage . 15

4.1.1 References . 16

5 easYPipe quickstart guide 17
5.1 1. Retrieve and organize your processed data . 17
5.2 2. Prepare the data with ‘prep’ . 17
5.3 3. Reindex if necessary with ‘reindex’ . 17
5.4 4. Add ligands with ‘ligands’ . 18
5.5 5. Process the data with ‘launch’ . 18

5.5.1 Mode . 18
5.5.2 Ligand search . 18
5.5.3 Datasets to treat . 19

5.6 6. Compile results in a summary file . 19
5.7 7. Automatic mode . 19

i

6 easYPipe ‘prep’ 21
6.1 Usage . 21
6.2 How the data should be organized ? . 21
6.3 What does it do ? . 22
6.4 References . 26

7 easYPipe ‘reindex’ 27
7.1 Usage . 27
7.2 What does it do ? . 27
7.3 References . 29

8 easYPipe ‘ligands’ 31
8.1 Usage . 31
8.2 What does it do ? . 31
8.3 References . 33

9 easYPipe ‘launch’ 35
9.1 Usage . 35
9.2 What does it do ? . 36

9.2.1 1. Sort mtz files according to space group in reference pdb, and decreasing completeness . . 36
9.2.2 2. List mtz files according to option ‘best’, ‘autoproc’ or ‘whole’ 36
9.2.3 3. List mtz files with mode and ligand information for running Phenix 37
9.2.4 4. Launch Phenix according to chosen mode and options 42
9.2.5 5. Write results . 43

9.3 Phenix options according to modes (only for information) . 46
9.4 References . 47

10 easYPipe ‘summary’ 49
10.1 Usage . 49
10.2 What does it do ? . 49

11 easYPipe ‘auto’ 51
11.1 Usage . 51
11.2 How the data should be organized ? . 51
11.3 What does it do ? . 52

12 easYPipe ‘pandda’ 53
12.1 Usage . 53
12.2 What does it do ? . 53
12.3 References . 54

ii

easypipe Documentation, Release 1.3.0

You can also grab a hardcopy of the easYPipe documentation in PDF

CONTENTS 1

easypipe Documentation, Release 1.3.0

2 CONTENTS

CHAPTER

ONE

GETTING STARTED (LINUX)

Check your python version

First, open a terminal.

easYPipe needs at least Python 3.6.

You may already have Python installed – you can check which version by doing:

$ python --version

If the version is < 3.0, do:

$ python3 --version

If that fails or Python 3 version is <3.6, install Python 3.6 using the package manager of your distribution. For example
for Ubuntu 16.10 or newer:

$ sudo add-apt-repository ppa:deadsnakes/ppa
$ sudo apt update
$ sudo apt-get install python3.6

If you’ve updated you Python version from 3.5 to 3.6, you can change default Python 3 to Python 3.6:

$ update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.5 1
$ update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.6 2

Check that Python 3 has been correctly installed:

$ python3 --version
Python 3.6

Check if pip is installed

pip is a package management tool for Python.

Check if pip3 is installed:

$ which pip3

If that fails, install pip3 using the package manager of your distribution. For example for Ubuntu:

$ sudo apt-get install python3-pip

Check if pip3 is linked to Python >= 3.6:

3

https://www.python.org/
https://pip.pypa.io/en/stable/

easypipe Documentation, Release 1.3.0

$ pip3 --version
pip 21.0.1 from /home/username/.local/lib/python3.6/site-packages/pip (python 3.6)

If it’s not the case, you can try:

$ wget https://bootstrap.pypa.io/get-pip.py
$ sudo python3 get-pip.py
then check:
$ pip3 --version

Software requirements

easYPipe is a pipeline that requires other software.

Phenix

You need Phenix 1 installed and to modify PHENIX_PATH value in config.py file accordingly.

Example for PHENIX_PATH in config.py:

PHENIX_PATH = "/usr/local/phenix-1.18.2-3874/"

Open Babel

Open Babel 2 is a chemical toolbox needed for ligands.

Example for BABEL_PATH in config.py:

BABEL_PATH = "/usr/local/OPENBABEL/openbabel-2-4-1/build/bin/"

Important: paths to these software have to be modified in config.py file accordingly to your installation (see next
step)

Download and install easypipe package

Download the zip archive that should look like easypipe-1.3.0.tar.gz.

Go where is the archive and unzip:

$ tar -xvzf easypipe-1.3.0.tar.gz

Go to folder easypipe-1.3.0:

$ cd easypipe-1.3.0

1 https://www.phenix-online.org/
2 http://openbabel.org/wiki/Main_Page

4 Chapter 1. Getting started (Linux)

https://www.phenix-online.org/
http://openbabel.org/wiki/Main_Page
https://www.phenix-online.org/
http://openbabel.org/wiki/Main_Page

easypipe Documentation, Release 1.3.0

Modify (open in a text editor) config.py file (in easypipe-1.3.0 folder), in particular ‘Software used by modules’ part
since nothing will work without links to software.

Warning: config.py file modifications have to be done before installation !! If you want to modify it afterwards,
just launch installation again.

Then install:

$ sudo python setup.py install # if your default python version is >=3.6
or
$ sudo python3 setup.py install # if your python3 version is >=3.6
or
$ sudo python3.6 setup.py install # if your python3 version is linked to python3.5

If you’ve updated you Python version from 3.5 to 3.6, you may encountered some dependecies and conflict problems.
Read carefully the error messages. These commands can help you:

$ sudo apt-get install libffi-dev

$ sudo pip3 uninstall PyNaCl
$ sudo pip3 install PyNaCl

$ sudo pip3 install setuptools_rust

$ cd /usr/lib/python3/dist-packages
$ sudo ln -s apt_pkg.cpython-{35m,36m}-x86_64-linux-gnu.so

Check easypipe installation

You can test if installation is successfull doing:

$ easypipe.py -h

If you get no error but the help message, easypipe installation is successfull.

If you’ve updated you Python version from 3.5 to 3.6, you may encountered the following error:

$ PermissionError: [Errno 13] Permission denied: '/usr/local/lib/python3.6/dist-packages/easypipe-1.3.0-py3.6.egg/EGG-INFO/requires.txt'

In this case, this command should help:

$ cd /usr/local/lib/python3.6/dist-packages/easypipe-1.3.0-py3.6.egg/EGG-INFO/
$ sudo chmod a+r requires.txt

Uninstall easypipe package

To uninstall easypipe package properly, do:

$ sudo pip3 uninstall easypipe
or
$ sudo python3 -m pip uninstall easypipe
or
$ sudo python3.6 -m pip uninstall easypipe

1.5. Check easypipe installation 5

easypipe Documentation, Release 1.3.0

Note: ‘pip3 freeze’ lists the names of all python packages installed.

References

6 Chapter 1. Getting started (Linux)

CHAPTER

TWO

GETTING STARTED (WINDOWS)

Check your python version

First, open a Command Prompt.

Note: To open Command Prompt, simply type ‘cmd’ in the search box of the Windows taskar.

easYPipe needs at least Python 3.6.

You may already have Python installed – you can check which version by doing:

C:\> python --version
or
C:\> py -V

If Python version is <3.6, install the latest Python 3 version. Download the latest python version Python downloads
site. You can follow instructions here. But what you need is simply:

- Run the installer. You can do so by double-clicking python-<version>.exe in your Downloads folder.
- Check the box next to "Add Python <version> to PATH." It's at the bottom of the window.
- Install Now (Customize installation not compulsory.
- Click Disable path length limit. This ensures that Python (and other apps) to use paths more than 260 characters in length.

Check that Python 3 has been correctly installed:

C:\> python --version
Python 3.9

or

C:\> py -V
Python 3.9

Software requirements

easYPipe is a pipeline that requires other software.

7

https://www.python.org/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.wikihow.com/Install-Python-on-Windows

easypipe Documentation, Release 1.3.0

Phenix

You need Phenix 1 installed and to modify PHENIX_PATH value in config.py file accordingly.

Example for PHENIX_PATH in config.py:

PHENIX_PATH = r"C:\Users\myname\Phenix\phenix-installer-1.19.1-4122-intel-windows-x86_64"

Open Babel

Open Babel 2 is a chemical toolbox needed for ligands.

Install Open Babel GUI for Windows.

Example for BABEL_PATH in config.py:

BABEL_PATH = r"C:\Program Files\OpenBabel-3.1.1"

Important: paths to these software have to be modified in config.py file accordingly to your installation (see next
step)

Tip: it might be wise to use LibreOffice 3 as many csv spreadsheets are generated by easYPipe and Excel does not
handle the official csv format (i.e. comma-separated values) well for non-English speaking versions

Download and install easypipe package

Download the zip archive that should look like easypipe-1.3.0.tar.gz.

Go where is the archive and unzip:

C:\> tar -xvzf easypipe-1.3.0.tar.gz

Go to folder easypipe-1.3.0:

C:\> cd easypipe-1.3.0

Modify (open with a text editor like Notepad) config.py file (in easypipe-1.3.0 folder), in particular ‘Software used by
modules’ part since nothing will work without links to software.

Warning: config.py file modifications have to be done before installation !! If you want to modify it afterwards,
just launch installation again.

Then install:

C:\> python setup.py install
or
C:\> py setup.py install

1 https://www.phenix-online.org/
2 http://openbabel.org/wiki/Main_Page
3 https://www.libreoffice.org/

8 Chapter 2. Getting started (Windows)

https://www.phenix-online.org/
http://openbabel.org/wiki/Main_Page
https://www.libreoffice.org/
https://www.phenix-online.org/
http://openbabel.org/wiki/Main_Page
https://www.libreoffice.org/

easypipe Documentation, Release 1.3.0

Check easypipe installation

You can test if installation is successfull doing:

$ easypipe.py -h

If you get no error but the help message, easypipe installation is successfull.

Uninstall easypipe package

To uninstall easypipe package properly, do:

C:\> pip uninstall easypipe

Note: ‘pip freeze’ lists the names of all python packages installed.

References

2.4. Check easypipe installation 9

easypipe Documentation, Release 1.3.0

10 Chapter 2. Getting started (Windows)

CHAPTER

THREE

EASYGET

easYGet comes with easYPipe.

easYGet makes it possible to download all at once the mx ‘PROCESSED_DATA’ from a synchrotron for a given
beamline (several dates possible) and a given acronym.

Downloaded processed datasets are organized by dataset folders, ready to launch easypipe.

For the moment, only works for data from Grenoble ESRF synchrotron.

easYGet usage

easyget.py [-h] [-s {ESRF}] [-l LOGIN] [-w PASSWORD] [-b BEAMLINE] [-d DATES] [-p PROTEIN]

optional arguments description
-h, –help show this help message and exit
-s {ESRF}, –synchrotron {ESRF} which synchrotron? (default = ERSF)
-l LOGIN, –login LOGIN synchrotron login (Example: ‘mx—-‘)
-w PASSWORD, –password
PASSWORD

password for connexion at synchrotron

-b BEAMLINE, –beamline
BEAMLINE

name of the beamline

-d DATES [DATES ...], –dates
DATES [DATES ...]

date of the run (format AAAAMMJJ) or list of dates for the same run
(format AAAAMMJJ AAAAMMJJ)

-p PROTEIN, –protein PROTEIN protein acronym or space if no acronym (manual collections)
-g GROUP, –group GROUP group added via MxCube3 as a supplementary folder level before acronym

Information can be provided either in command line or in interactive mode in a terminal, or mix.

For example, you can simply run:

$ easyget.py

or:

$ easyget.py --login mx1000 --password my_passwd

or:

$ easyget.py --login mx1000 --password my_passwd --protein myprot --beamline id30a1 --dates 20210131 20210201

other commands are possible ...

Note: when just one date is given, test also the day after (useful for 24h experiments ...)

11

easypipe Documentation, Release 1.3.0

What does it do ?

Processed data @ESRF: for each crystal collected, several proccesses can succeed and for each a zip is available for
download

All these processed data are copied this way by easYGet:

• dataset folder for each dataset

– PROC_1, PROC_2, ... if run 1, run 2 ...

– process sub-folder, with processed data for each process

12 Chapter 3. easYGet

easypipe Documentation, Release 1.3.0

3.2. What does it do ? 13

easypipe Documentation, Release 1.3.0

14 Chapter 3. easYGet

CHAPTER

FOUR

EASYPIPE

easYPipe is a pipeline for the automatization of ligand and fragment X-Ray crystallographic screening.

easYPipe sequentially runs phenix.ligand_pipeline 1 on several datasets of a protein that has been screened with
different ligands.

When ligand smiles are given, ligand can be placed automatically in each corresponding structure.

Results are gathered and organized in a ‘RESULTS’ directory, which facilitates future visualization, refinement and
deposition. Corresponding relevant information is summarized in a csv file.

easYPipe is specially adapted for ligand or fragment screening in structure-based drug design projects.

See also:

easYGet that comes with easYPipe, for an automated download of processed data from synchrotron.

easYPipe usage

easypipe.py [-h] data {prep,reindex,ligands,launch,pandda} ...

arguments description
data folder with datasets in subfolders (mandatory)
-h, –help show this help message and exit

Example:

$ easypipe.py PROCESSED_DATA -h

subcom-
mands

description

prep prepare data: listing of mtz to treat with information
reindex try to reindex mtz according to the space group of reference file
ligands generate ligands files before launching with ligand search
launch launch all the “phenix.ligand-pipeline” (after the preparation steps)
summary compile the results of all the ‘launch’ execution in a single csv file
auto run main easYPipe steps (prep, reindex, launch, summary) in automatic mode, but without

ligand search
pandda copy results from easypipe to a ‘PANDDA’ folder, as data ready to launch PanDDA

1 https://www.phenix-online.org/documentation/reference/ligand_pipeline.html

15

https://www.phenix-online.org/documentation/reference/ligand_pipeline.html
https://www.phenix-online.org/documentation/reference/ligand_pipeline.html

easypipe Documentation, Release 1.3.0

Example:

$ easypipe.py PROCESSED_DATA prep

You can have a look to the quickstart guide.

For a better experience, also read instructions for each subcommands.

References

16 Chapter 4. easYPipe

CHAPTER

FIVE

EASYPIPE QUICKSTART GUIDE

1. Retrieve and organize your processed data

Note: You can retrieve your processed data from synchrotron using easYGet.

Processed data should be in datasets folders, all grouped in a folder. More information on how to organize your data
here.

2. Prepare the data with ‘prep’

The first step is intended to list mtz to be treated:

$ easypipe.py PROCESSED_DATA prep

where here ‘PROCESSED_DATA’ is the folder with your datasets.

Warning: For Windows users, $ is the Linux prompt that corresponds to C:> in Windows command prompt, and
should not be written

Now, you can have a look at /easypipe/1a_prep/mtz_to_treat_ALL.csv file that lists mtz found in your processed data
with information like resolution, completeness or space group.

For more details on this step see here.

3. Reindex if necessary with ‘reindex’

If you see that some mtz should be in higher symmetry space group (in /easypipe/1a_prep/mtz_to_treat_ALL.csv file),
then you can try to reindex.

Run:

$ easypipe.py PROCESSED_DATA reindex P41212
equivalent to:
$ easypipe.py PROCESSED_DATA reindex 92

For more details on this step see here.

17

easypipe Documentation, Release 1.3.0

4. Add ligands with ‘ligands’

This step is necessary if you want Phenix to try to find and place ligands, or if you want to automatically generate the
CIF and PDB of your ligands.

First, you have to fill in the fields <ligand name> and <ligand smiles> of /1c_ligands/ligands_for_datasets.csv file.

Then, run:

$ easypipe.py PROCESSED_DATA ligands easYPipe/1c_ligands/ligands_for_datasets_OK.csv

where here ligands_for_datasets_OK.csv is the name of your filled ligand csv file.

For more details on this step see here.

5. Process the data with ‘launch’

Now you can run Phenix on your processed mtz.

Mode

Default mode, is ‘fast’ mode. This mode uses rigid body refinement and can be run to get a first result rapidly.

Example:

$ easypipe.py PROCESSED_DATA launch my_ref_folder

where my_ref_folder gather fasta file and pdb files for replacement, and cif file if there is a ligand in the model.

Warning: pdb files should include the row starting with ‘CRYST1’ containing information on space group

Now, have a look at your results in the corresponding ‘RESULTS’ csv file.

If some processes failed, they probably need longer calculations. You can try ‘full’ mode:

$ easypipe.py PROCESSED_DATA launch my_ref_folder --mode full

In case your protein changes its space group, with ligand for example, you can ask not to fix space group. As a result,
all mtz could be treated even with ‘bad’ space group. The duration for this will be much longer. But you can only do
it for some using simulation mode first (see above):

$ easypipe.py PROCESSED_DATA launch my_ref_folder --mode allsg

Ligand search

If you want LigandFit to place ligands, you first have to run ‘ligand’ subcommand (see above).

Then just add ‘–lig’ option:

$ easypipe.py PROCESSED_DATA launch my_ref_folder --mode full --lig

The default cutoff for LigandFit to place a ligand is 0.7, but you can change it if you see that it is too high, with ‘–cclig’
option:

18 Chapter 5. easYPipe quickstart guide

easypipe Documentation, Release 1.3.0

$ easypipe.py PROCESSED_DATA launch my_ref_folder --mode full --lig --cclig 0.6

If several ligands are supposed to fix, you can ask for LigandFit to place more than one ligand, with ‘–nblig’ option:

$ easypipe.py PROCESSED_DATA launch my_ref_folder --mode full --lig --cclig 0.6 --nblig 5

Datasets to treat

Default behavior is to run phenix.ligand_pipeline on the mtz of best completeness for each dataset, you can start with
it.

If there are failures in the treatment of ‘best completeness’ mtz, you can try to treat a higher number of mtz for each
dataset.

You can first start by running on mtz from autoPROC process which is generally a good compromise between resolu-
tion and completeness:

$ easypipe.py PROCESSED_DATA launch my_ref_folder --mode full --lig --autoproc

Or you can run on the two first mtz of best completeness for each dataset:

$ easypipe.py PROCESSED_DATA launch my_ref_folder --mode full --lig --best 2

or more ...:

$ easypipe.py PROCESSED_DATA launch my_ref_folder --mode full --lig --best 5

or on the whole processed mtz files:

$ easypipe.py PROCESSED_DATA launch my_ref_folder --mode full --lig --whole

If only some datasets are problematic, you can run in simulation mode first, modify the corresponding ‘launch’ csv
file in /easYPipe/2_launch/ (replace ‘yes’ by ‘no’ in the ‘to treat’ column, for those not to process), then run again:

$ easypipe.py PROCESSED_DATA launch my_ref_folder --mode full --lig --whole --simulate
then, after modification of the 'launch' csv file:
$ easypipe.py PROCESSED_DATA launch my_ref_folder --mode full --lig --whole

Then, only selected mtz will be treated, reducing the duration of the treatment.

For more details on this step see here.

6. Compile results in a summary file

If you have run several times ‘launch’ subcommand, you will have several ‘RESULT’ csv files that you probably wish
to compile and clean.

Then run:

$ easypipe.py PROCESSED_DATA summary

7. Automatic mode

This mode allows to run main easYPipe steps (prep, reindex, launch, summary) without any intervention. It could be
a good starting point before running more ‘launch’ commands or ligand search.

5.6. 6. Compile results in a summary file 19

easypipe Documentation, Release 1.3.0

Example:

$ easypipe.py PROCESSED_DATA auto my_ref_folder --best 2 --mode full

Note: Ligand search is not supported at this time in this mode.

For more details on this mode see here.

20 Chapter 5. easYPipe quickstart guide

CHAPTER

SIX

EASYPIPE ‘PREP’

Important: This step is a first mandatory step for the preparation of the data.

Usage

easypipe.py data prep [-h]

Example:

$ easypipe.py PROCESSED_DATA prep

How the data should be organized ?

The data folder (whatever it’s name) must contain only datasets folders.

Within each dataset folder, the processed data can be organized in several ways:

• a mtz file directly in dataset folder

• a mtz file in a sub-folder, or in a sub-sub-folder ... of dataset folder

• several processes are possible for a dataset, provided that they are in different sub-folders

• if several mtz files are present in the same sub-folder, only one will be treated on the basis of templates (from
ESRF EDNA processes)

21

easypipe Documentation, Release 1.3.0

Note: Data downloaded with easYGet are directly in the right tree organization.

What does it do ?

In an ‘easYPipe’ folder created at the place where it is executed, ‘prep’ copies each processed data mtz in a sub-folder
of the dataset in this way:

• creation of an ‘easYPipe’ treatment directory where it is run

• creation of a subdirectory ‘0_processed_datasets’ where all the datasets folder are created

• creation of a ‘data’ folder in each dataset folder and copy in this folder of processed mtz and log files

• if there are several mtz in a folder, search for ‘EDNA’ treatment template and selects the right mtz file

Then:

• launch of xtriage 1 for each mtz to get resolution, completeness, space group and cell parameters

1 https://www.phenix-online.org/documentation/reference/xtriage.html

22 Chapter 6. easYPipe ‘prep’

https://www.phenix-online.org/documentation/reference/xtriage.html
https://www.phenix-online.org/documentation/reference/xtriage.html

easypipe Documentation, Release 1.3.0

• information on mtz files to be treated written in ‘/easypipe/1a_prep/mtz_to_treat_ALL.csv’ file

6.3. What does it do ? 23

easypipe Documentation, Release 1.3.0

-creation of a csv file ‘/easypipe/1c_ligands/ligands_for_datasets.csv’ for future ligand generation with eLBOW 2

2 https://www.phenix-online.org/documentation/reference/elbow.html

24 Chapter 6. easYPipe ‘prep’

https://www.phenix-online.org/documentation/reference/elbow.html
https://www.phenix-online.org/documentation/reference/elbow.html

easypipe Documentation, Release 1.3.0

You have to fill ‘ligand name’ and ‘ligand smiles’ fields before running ‘easYPipe ligands subcommand’.

Caution: Save the modified csv file somewhere else or with another name if you don’t want to overwrite it in case
you launch ‘prep’ sub-command again ...

You can also run ‘easYPipe reindex subcommand’ if some mtz should be in higher symmetry space group.

If you are not interested in ligand placement or reindexation, you can directly run ‘easYPipe launch subcommand’.

6.3. What does it do ? 25

easypipe Documentation, Release 1.3.0

References

26 Chapter 6. easYPipe ‘prep’

CHAPTER

SEVEN

EASYPIPE ‘REINDEX’

This optional step is useful when several mtz should be in higher symmetry space group.

The program try to reindex according to the space group of the reference mtz.

Example: P422 can be re-indexed to P41212.

Usage

easypipe.py data reindex [-h] ref_mtz

arguments description
-h, –help show this help message and exit
sg_ref space group of reference for reindexing (name or number)

Example:

$ easypipe.py PROCESSED_DATA reindex P41212
equivalent to:
$ easypipe.py PROCESSED_DATA reindex 92

What does it do ?

• try to reindex mtz file with reflection_file_converter 1 if space group is different from reference space group

1 https://phenix-online.org/documentation/reference/reflection_file_tools.html

27

https://phenix-online.org/documentation/reference/reflection_file_tools.html
https://phenix-online.org/documentation/reference/reflection_file_tools.html

easypipe Documentation, Release 1.3.0

• launch xtriage 2 for each successfully reindexed mtz to get resolution, completeness, space group and cell
parameters

• write a new ‘mtz_to_treat_ALL_reindexed.csv’ in in ‘/easypipe/1b_reindex_...’ folder, with reindexed mtz files
information

2 https://www.phenix-online.org/documentation/reference/xtriage.html

28 Chapter 7. easYPipe ‘reindex’

https://www.phenix-online.org/documentation/reference/xtriage.html
https://www.phenix-online.org/documentation/reference/xtriage.html

easypipe Documentation, Release 1.3.0

becomes:

where P422, P4212 processed data have been successfully reindexed to P41212 space group.

Warning: If you run again ‘prep’ step for any reason like adding new datasets, you will have to run again this
‘reindex’ step. Even if they don’t need to be reindexed, you have to run ‘reindex’ step to have the right reindexed
csv file including these new datasets.

References

7.3. References 29

easypipe Documentation, Release 1.3.0

30 Chapter 7. easYPipe ‘reindex’

CHAPTER

EIGHT

EASYPIPE ‘LIGANDS’

This step is mandatory if you want Phenix to search ligand, else it is optional.

‘ligands’ subcommand generates pdb and cif from smiles with eLBOW 2 .

Important: First, template csv file generated with ‘prep’ subcommand’ have to be completed with ligands names
and smiles.

Usage

easypipe.py data ligands [-h] ligands_csv

arguments description
-h, –help show this help message and exit
ligands_csv ligands_for_datasets.csv file from ‘prep’ with ligands names and smiles completed (mandatory)

Example:

$ easypipe.py PROCESSED_DATA ligands easYPipe/1c_ligands/ligands_for_datasets_OK.csv

What does it do ?

• First, you have to fill in the fields ‘ligand name’ and ‘ligand smiles’ of /1c_ligands/ligands_for_datasets.csv csv
file, then save the csv file somewhere else or with another name if you don’t want to overwrite it in case you run
‘prep’ subcommand again ...

2 https://www.phenix-online.org/documentation/reference/elbow.html

31

https://www.phenix-online.org/documentation/reference/elbow.html
https://www.phenix-online.org/documentation/reference/elbow.html

easypipe Documentation, Release 1.3.0

• ‘ligands’ subcommand generates pdb and cif of ligands and copies them in corresponding processed dataset
folders, in a ‘ligand’ folder. It first creates a smiles file accordingly to the ligands_csv input, canonizes it thanks
to Open Babel 1 and converts it with eLBOW 2 to pdb and cif.

1 http://openbabel.org/wiki/Main_Page

32 Chapter 8. easYPipe ‘ligands’

http://openbabel.org/wiki/Main_Page
https://www.phenix-online.org/documentation/reference/elbow.html
http://openbabel.org/wiki/Main_Page

easypipe Documentation, Release 1.3.0

Important: If eLBOW 2 fails to generate pdb and cif from smiles, you can copy your own cif in ligand sub-folder of
the corresponding dataset, eLBOW 2 will generate pdb from this cif.

References

8.3. References 33

https://www.phenix-online.org/documentation/reference/elbow.html
https://www.phenix-online.org/documentation/reference/elbow.html

easypipe Documentation, Release 1.3.0

34 Chapter 8. easYPipe ‘ligands’

CHAPTER

NINE

EASYPIPE ‘LAUNCH’

‘launch’ subcommand runs phenix.ligand_pipeline 1 on all the mtz (several processed data, several datasets) according
to options and information in ‘mtz_to_treat_ALL.csv’ file.

Usage

easypipe.py data launch [-h] [-m {fast,full,allsg}] [-l] [-n NUMBER] [-c NUMBER] [-b NUMBER | -a] [-s] [-t TEM-
PLATE] ref

arguments description
ref folder with fasta file and pdb file for replacement, and cif(s) if ligand(s) in the model

Warning: reference pdb files should include the row starting with ‘CRYST1’ containing information on space
group

optional arguments description
-h, –help show this help message and exit
-m {fast,full,allsg},
–mode
{fast,full,allsg}

running mode: fast, full, or allsg (default = fast)

-l, –lig for ligand search and placement
-n NUMBER, –nblig
NUMBER

number of ligand copies to be searched (default = 1, max 9 for the moment).

-c NUMBER, –cclig
NUMBER

minimum CC to consider a ligand placement correct (default = 0.7). Ligands with at
least this CC will be incorporated into the current model for refinement.

-b NUMBER, –best
NUMBER

launch only for mtz with best completeness, NUMBER indicates how many mtz to treat
(default 1), ex: –best 2

-a, –autoproc launch only for mtz from autoPROC, or if none launch for mtz with best completeness
-w, –whole launch for the whole mtz processes
-s, –simulate only simulate, generate a csv file according to the future launch options. Give the

possibility to modify the csv file to choose not to launch certain treatments, before
restarting without simulation mode.

-t TEMPLATE,
–template
TEMPLATE

optional template name for log files and result folders, in case re-launching with
different reference pdb of the same space group (else will overwrite).

Example:

1 https://www.phenix-online.org/documentation/reference/ligand_pipeline.html

35

https://www.phenix-online.org/documentation/reference/ligand_pipeline.html
https://www.phenix-online.org/documentation/reference/ligand_pipeline.html

easypipe Documentation, Release 1.3.0

$ easypipe.py PROCESSED_DATA launch my_ref_folder --mode full --lig --best 2 --cclig 0.6
equivalent to:
$ easypipe.py PROCESSED_DATA launch my_ref_folder -m full -l -b 2 -c 0.6

What does it do ?

1. Sort mtz files according to space group in reference pdb, and decreasing com-
pleteness

If there are datasets without any mtz to treat according to space group, these datasets are listed in another csv file
(“datasets_without_mtz_<sg_ref>.csv”).

2. List mtz files according to option ‘best’, ‘autoproc’ or ‘whole’

• Option example: –best 1 (default)

List only mtz with best completeness for each dataset.

• Option example: –best 2

List only 2 first mtz, when exist, with best completeness, for each dataset.

36 Chapter 9. easYPipe ‘launch’

easypipe Documentation, Release 1.3.0

• Option example: –autoproc

List only mtz from autoPROC, or if none list mtz with best completeness, for each dataset.

• Option example: –whole

Whereas it is not recommended because it is time demanding, for problematic data it could be usefull to
treat the whole mtz processed.

3. List mtz files with mode and ligand information for running Phenix

9.2. What does it do ? 37

easypipe Documentation, Release 1.3.0

Note: Phenix options for the different modes are specified hereafter.

For each dataset, write in a ‘launch csv’ file:

• if ligand cif file is present for search when asked

• mode that will be launched depending on mode asked, the presence (or not) of ligand cif file and data
quality

• information in case mode is different from mode asked

• result folder name

Limits for poor data: There are minimum limits to process in ‘full’ or ‘allsg’ modes. These limits can be modified
in config.py file (after what easypipe should be reinstalled).

• minimum completeness (default = 70%)

• minimum resolution (default = 3.75)

Poor data will be treated in ‘fast’ mode.

Option examples:

• Option example: –mode fast (default)

Phenix uses a simple rigid-body refinement for model placement, which is faster and most of the time
sufficient if the input model is already close enough to the target structure.

38 Chapter 9. easYPipe ‘launch’

easypipe Documentation, Release 1.3.0

• Option example: –mode full

Phenix will try rigid-body refinement first, then run Phaser if the R-free is too high (>0.4), it will run
AutoBuild after initial refinement only if R-free is greater than the max_r_free cutoff = 0.3.

9.2. What does it do ? 39

easypipe Documentation, Release 1.3.0

• Option example: –mode allsg

In this mode, mtz will be treated regardless of the space group. Phenix will run Phaser, then run AutoBuild
after initial refinement only if R-free is greater than the max_r_free cutoff = 0.3.

40 Chapter 9. easYPipe ‘launch’

easypipe Documentation, Release 1.3.0

• Option example: –mode full –lig

Phenix will be run in ‘full’ mode. Then ligand will be searched with LigandFit 2 and placed if cutoff
model-to-map CC is more than 0.7 (default). This cutoff can be changed with ‘–cclig’ option. The
number of ligands to be placed (default=1) can be changed with ‘–nblig’ option.

2 https://www.phenix-online.org/documentation/reference/ligandfit.html

9.2. What does it do ? 41

https://www.phenix-online.org/documentation/reference/ligandfit.html
https://www.phenix-online.org/documentation/reference/ligandfit.html

easypipe Documentation, Release 1.3.0

4. Launch Phenix according to chosen mode and options

phenix.ligand_pipeline 1 is launched for each mtz file according to chosen mode and options, as listed in the ‘launch
csv’ file (see 3. above).

If this ‘launch csv’ exists and you have modified something like adding a ligand cif for example, ‘launch’ mode should
be run again, but in simulation mode so as it generates a new correct launch csv file instead of using existing one.
When a new ‘launch csv’ file has been generated, just run the same command without simulation mode.

Example:

$ easypipe.py PROCESSED_DATA launch my_ref_folder --mode full --lig --autoproc --simulate
then:
$ easypipe.py PROCESSED_DATA launch my_ref_folder --mode full --lig --autoproc

Simulation mode also allows to modify the ‘to treat’ column of the ‘launch csv’ file (replacing ‘yes’ by ‘no’). Useful
if you want to run some options only on some mtz. Then just run the same command without simulation mode. You

42 Chapter 9. easYPipe ‘launch’

https://www.phenix-online.org/documentation/reference/ligand_pipeline.html

easypipe Documentation, Release 1.3.0

can also modify the following columns: ‘mode’, ‘ligand search’, ‘CC’, ‘nb ligands’, as long as you know what you
are doing.

5. Write results

At the end of each ‘launch’ subcommand, results are copied in a ‘RESULT’ folder.

In datasets folders, copy of:

• corresponding processed data and logs (useful for deposition at the PDB)

• pdb and mtz result files

• phenix cif file if ligand found

• ligand folder, if exists

• pdb of ligand(s) placed by LigandFit (all CC)

9.2. What does it do ? 43

easypipe Documentation, Release 1.3.0

In a ‘_mtz_treated’ folder, copy of:

44 Chapter 9. easYPipe ‘launch’

easypipe Documentation, Release 1.3.0

• csv listing datasets without mtz file

• csv with mtz list

• csv with mtz list after reindexing

• csv with mtz list sorted according to reference space group

• all ‘launch’ csv files, with a counter at the end of the names in case of several launches (with handmade modifi-
cations of launch csv file for example)

For each ‘launch’ subcommand, a csv file is created that summarizes the corresponding results for each dataset, with
information on:

• success of Phenix

• failing step (in case success = no)

• resolution

• completeness

• Rwork / Rfree

• space group

• if ligand has been placed, number of ligands found, corresponding CC

Option example: -a –mode full –lig –nblig 9 –cclig 0.6

9.2. What does it do ? 45

easypipe Documentation, Release 1.3.0

Note: To compile the results of all ‘launch’ subcommands you have run, run ‘summary’ subcommand

Phenix options according to modes (only for information)

phenix.ligand_pipeline 1 options are the following:

• common options:

nproc=Auto

preserve_chain_id=True: Preserves the original chain ID

refine.after_ligand.hydrogens=False: Hydrogen atoms won’t be added prior to the final refinement step (else refine-
ment significantly slower)

prune=False: disable Prune the model after refinement to remove residues and sidechains in poor density

keep_hetatms=True: prevent Phaser from resetting HETATMs occupancies to zero

refine.after_mr.update_waters=False: don’t add/remove waters automatically

• ‘fast’ mode:

skip_xtriage=True

mr=False: rigid-body refinement will be used

quick_refine=True: which will shorten both refinement steps from 6 to 3 cycles, and disable weight optimization.

build=False

skip_ligand=True

reference_structure=’model.pdb’: If specified, phenix.find_alt_orig_sym_mate will be applied to map the solution to
the reference structure (not working when Phaser with several monomers)

• ‘full’ mode:

46 Chapter 9. easYPipe ‘launch’

https://www.phenix-online.org/documentation/reference/ligand_pipeline.html

easypipe Documentation, Release 1.3.0

mr=Auto: the program will try rigid-body refinement first, then run Phaser if the R-free is too high (>0.4)

build=Auto: Run AutoBuild after initial refinement. By default, this will be done if R-free is greater than the
max_r_free cutoff = 0.3

autobuild.quick=True: Run AutoBuild in quick mode. Inferior results, but a huge time-saver

quick_refine=True: which will shorten both refinement steps from 6 to 3 cycles, and disable weight optimization.

• ‘allsg’ mode:

mr=True

quick_refine=False

• if ligand search:

ligand_copies=1 (except if option –nblig >1)

keep_input_restraints=True : if the input files include pre-calculated restraints for the target ligand, eLBOW will
propagate these restraints instead of generating new ones.

References

9.4. References 47

easypipe Documentation, Release 1.3.0

48 Chapter 9. easYPipe ‘launch’

CHAPTER

TEN

EASYPIPE ‘SUMMARY’

This step can be run after several runs of ‘launch’ subcommands.

For each ‘launch’ subcommand, a ‘RESULT’ csv file is created that summarizes the corresponding results for each
dataset (see here). So, if you have tried several options, you will have as many ‘RESULTS’ csv files.

Then, you probably want to compile all these results for a better view.

Usage

easypipe.py data summary [-h]

Example:

$ easypipe.py PROCESSED_DATA summary

What does it do ?

In the ‘RESULT’ folder, ‘summary’ creates a ‘SUMMARY’ csv file where all datasets results are compiled.

For each datasets, redondant results are deleted and the remaining ones are sorted according to:

• ‘dataset’

• ‘SUCCESS’

• ‘ligand search’

• ‘mode’

• ‘Ligand’ (found or not)

• ‘Completeness’

49

easypipe Documentation, Release 1.3.0

This way, the first row of each dataset should be most of the time the best treatment to consider, but is always better to
have a critical eye on information like completeness or resolution to be sure ...

50 Chapter 10. easYPipe ‘summary’

CHAPTER

ELEVEN

EASYPIPE ‘AUTO’

This mode allows to launch main easYPipe steps (prep, reindex, launch, summary) without any intervention. Ligand
search is not possible for the moment.

Usage

easypipe.py data auto [-h] [-m {fast,full,allsg}] ref

arguments description
ref folder with fasta file and pdb file for replacement, and cif(s) if ligand(s) in the model

Warning: reference pdb files should include the row starting with ‘CRYST1’ containing information on space
group

optional arguments description
-h, –help show this help message and exit
-m {fast,full,allsg},
–mode {fast,full,allsg}

running mode: fast, full, or allsg (default = fast)

-b NUMBER, –best
NUMBER

launch only for mtz with best completeness, NUMBER indicates how many mtz to
treat (default 1), ex: –best 2

-a, –autoproc launch only for mtz from autoPROC, or if none launch for mtz with best completeness
-w, –whole launch for the whole mtz processes
-t TEMPLATE,
–template TEMPLATE

optional template name for log files and result folders, in case re-launching with
different reference pdb of the same space group (else will overwrite).

Example:

$ easypipe.py PROCESSED_DATA auto my_ref_folder --best 2 --mode full
equivalent to:
$ easypipe.py PROCESSED_DATA auto my_ref_folder -b 2 -m full

How the data should be organized ?

Processed data should be in datasets folders, all grouped in a folder. More information on how to organize your data
here.

51

easypipe Documentation, Release 1.3.0

What does it do ?

Executes successively, without any intervention, the following steps:

• prep

• reindex

• launch

• summary

The options are the same as for launch, except for the options concerning the search for ligands which is not enabled
at the moment. In the same way, the option “simulate” is not possible because it would imply an intervention. A new
‘launch csv’ file is therefore generated each time.

52 Chapter 11. easYPipe ‘auto’

CHAPTER

TWELVE

EASYPIPE ‘PANDDA’

If you have more than 40 datasets, you can try to use PanDDA 1 which is particularly suitable to the detection of
weakly bound ligands such as fragments.

This step can be run after all ‘launch’ subcommands have been executed, and aims at organizing the data processed
with easYPipe in order to be able to run PanDDA.

Usage

easypipe.py data pandda [-h]

Example:

$ easypipe.py ./PROCESSED_DATA/ pandda

What does it do ?

For each dataset, ‘pandda’ easYPipe subcommand copies in a dataset folder suitable for PanDDA:

• pdb and mtz files generated with easYPipe,

• cif and pdb files of corresponding ligand,

1 https://pandda.bitbucket.io/

53

https://pandda.bitbucket.io/
https://pandda.bitbucket.io/

easypipe Documentation, Release 1.3.0

References

54 Chapter 12. easYPipe ‘pandda’

	Getting started (Linux)
	Check your python version
	Check if pip is installed
	Software requirements
	Phenix
	Open Babel

	Download and install easypipe package
	Check easypipe installation
	Uninstall easypipe package
	References

	Getting started (Windows)
	Check your python version
	Software requirements
	Phenix
	Open Babel

	Download and install easypipe package
	Check easypipe installation
	Uninstall easypipe package
	References

	easYGet
	easYGet usage
	What does it do ?

	easYPipe
	easYPipe usage
	References

	easYPipe quickstart guide
	1. Retrieve and organize your processed data
	2. Prepare the data with `prep'
	3. Reindex if necessary with `reindex'
	4. Add ligands with `ligands'
	5. Process the data with `launch'
	Mode
	Ligand search
	Datasets to treat

	6. Compile results in a summary file
	7. Automatic mode

	easYPipe `prep'
	Usage
	How the data should be organized ?
	What does it do ?
	References

	easYPipe `reindex'
	Usage
	What does it do ?
	References

	easYPipe `ligands'
	Usage
	What does it do ?
	References

	easYPipe `launch'
	Usage
	What does it do ?
	1. Sort mtz files according to space group in reference pdb, and decreasing completeness
	2. List mtz files according to option `best', `autoproc' or `whole'
	3. List mtz files with mode and ligand information for running Phenix
	4. Launch Phenix according to chosen mode and options
	5. Write results

	Phenix options according to modes (only for information)
	References

	easYPipe `summary'
	Usage
	What does it do ?

	easYPipe `auto'
	Usage
	How the data should be organized ?
	What does it do ?

	easYPipe `pandda'
	Usage
	What does it do ?
	References

